MODULS LOCALS DE SISTEMES DINAMICS LINEALS AMB COEFICIENTS CONSTANTS.

Autor: MAGRET PLANAS M. DOLORS
Año: 1996
Universidad: POLITECNICA DE CATALUÑA
Centro de realización: DEPARTAMENTO: MATEMATICA APLICADA III PROGRAMA DE DOCTORADO: MATEMATICA APLICADA
Centro de lectura: INGENIEROS INDUSTRIALES
Director: GARCIA PLANAS M. ISABEL
Tribunal: FERRER LLOP JOSEP , MUÑOZ LECANDA MIGUEL CARLOS , HOYOS IZQUIERDO INMACULADA DE , VAN DOOREN PAUL , BASAÑEZ VILLALUENGA LUIS
Resumen de la tesis

LA PRESENTE MEMORIA ESTUDIA LA ESTABILIDAD ESTRUCTURAL DE TERNAS DE MATRICES. ES BIEN CONOCIDO QUE LOS SISTEMAS DINAMICOS LINEALES CON COEFICIENTES CONSTANTES PUEDEN VENIR DEFINIDOS POR TERNAS DE MATRICES, DE AHI EL INTERES DE ESTE ESTUDIO. EN PARTICULAR, SE DAN EN LA MEMORIA DISTINTAS CONDICIONES NECESARIAS Y SUFICIENTES PARA QUE UNA TERNA DE MATRICES SEA ESTRUCTURALMENTE ESTABLE CON RESPECTO DE UNA RELACION DE EQUIVALENCIA PREVIAMENTE INTRODUCIDA EN EL ESPACIO DE TERNAS DE MATRICES, BIEN A PARTIR DE SU FORMA REDUCIDA CANONICA, BIEN POR OTROS METODOS. EN ESTE ESTUDIO SE UTILIZAN DE FORMA BASICA LAS DEFORMACIONES MINIVERSALES DE TERNAS DE MATRICES, LO CUAL ES POSIBLE PUESTO QUE SE VE LA RELACION DE EQUIVALENCIA CONSIDERADA EN EL ESPACIO DE TERNAS DE MATRICES COMO LA INDUCIDA POR LA ACCION DE UN GRUPO DE LIE EN LA VARIEDAD DIFERENCIABLE DEL ESPACIO DE TERNAS DE MATRICES. EL ESTUDIO DE LOS CASOS DE TERNAS DE MATRICES NO ESTRUCTURALMENTE ESTABLES PARA LAS CUALES LA DIMENSION DE LA DEFORMACION MINIVERSAL ES INFERIOR O IGUAL A TRES SUGIERE UNA NUEVA PARTICION DEL ESPACIO DE TERNAS DE MATRICES (QUE SE DEMUESTRA QUE ES UNA ESTRATIFICACION) Y UNA NUEVA RELACION DE EQUIVALENCIA, LA ASOCIADA A ESTA ULTIMA PARTICION. SE CARACTERIZAN TAMBIEN LAS TERNAS DE MATRICES ESTRUCTURALMENTE ESTABLES RESPECTO DE ESTA NUEVA RELACION DE EQUIVALENCIA. FINALMENTE, SE ESTUDIAN LOS CASOS DE LAS TERNAS QUE NO SON ESTRUCTURALMENTE ESTABLES RESPECTO DE ESTA ULTIMA RELACION EN LOS CASOS EN QUE LA DIMENSION DE UNA FAMILIA MINITRANSVERSAL AL ESTRATO TIENE DIMENSION INFERIOR O IGUAL A TRES, FAMILIA QUE HA SIDO PREVIAMENTE ENCONTRADA. EN TODO EL ESTUDIO REALIZADO SE UTILIZA UN NUEVO SISTEMA COMPLETO DE INVARIANTES PARA UNA TERNA DE MATRICES, CUYA PRINCIPAL CARACTERISTICA ES QUE TODOS LOS INVARIANTES DISCRETOS DEL SISTEMA VIENEN DADOS EN FUNCION DEL RANGO DE UNAS CIERTAS MATRICES ASOCIADAS A LAS MATRICES QUE COMPONEN LA TERNA. LA DEFINICION DE ESTAS MATRICES Y LA DEMOSTRACION DE QUE ES UN SISTEMA COMPLETO DE INVARIANTES CONSTITUYE LA PRIMERA PARTE DE LA MEMORIA.
Materias relacionadas