MÁQUINA DE VECTORES SOPORTE ADAPTATIVA Y COMPACTA

Autor: PÉREZ CRUZ FERNANDO
Año: 2000
Universidad: POLITECNICA DE MADRID
Centro de realización: E.T.S.I. TELECOMUNICACIÓN
Centro de lectura: INGENIEROS DE TELECOMUNICACIÓN
Director: ARTÉS RODRÍGUEZ ANTONIO
Tribunal: CALVO RAMÓN MIGUEL , FIGUEIRAS VIDAL ANÍBAL , LAGUNAS HERNÁNDEZ MIGUEL ÁNGEL , DOCAMPO AMOEDO DOMINGO , ZUFIRÍA ZATARAIN PEDRO JOSÉ
Resumen de la tesis

La Máquina de Vectores Soporte (SVM) en un sistema de aprendizaje novedoso para construir clasificadores y funciones de regresión lineales y no lineales. La SVM es una técnica no paramétrica que construye la solución de forma explícita mediante una combinación lineal de las muestras de entrenamiento. La característica más relevante de la SVM es su capacidad para resolver problemas en los que los datos son de gran dimensionalidad sin degradar la solución por la falta de éstos. Esta propiedad la obtiene la SVM definiendo y maximizando la distancia entra la frontera de clasificación y las muestras, conocida como el margen. El funcional que debe minimizar la SVM es convexo con restricciones lineales, por ello su solución es única, sin mínimos locales. La SVM presenta ciertas limitaciones en su formulación original, como estar limitado a operar con muestras independientes e idénticamente distribuidas (i.i.d.) o a una función de coste fija. Además su procedimiento de optimización es difícil de implementar y presenta alta carga computacional, que limita su uso para problemas con muchas muestras. Por ello, la SVM no se puede aplicar en la diversidad de aplicaciones de procesado de señales no estacionarios, en las que sus propiedades puedan ser deseables. En los problemas de clasificación o regresión la función de coste puede venir determinada por el problema de resolver. El cambio de la función de coste debe proporcionar soluciones de menor error que las alcanzadas con la SVM y su función de coste original. Para superar las limitaciones indicadas sobre la SVM original, se ha tenido que modificar su procedimiento de optimización, que normalmente emplea programación cuadrática, por uno de mínimos cuadrado ponderado e iterados (IRWLS). Este procedimiento es de por sí más veloz que los de programación cuadrática, reduciendo considerablemente la carga computacional asociada a la resolución de la SVM. En el trabajo presentado en esta memoria se abordan las limitaciones debidas a la imposibilidad de trabajar con muestras no i.i.d., y con otras funciones de coste. Estas modificaciones han sido factibles gracias a la versatilidad del procedimiento de optimización propuesto. El cambio de la función de coste sólo se puede plantear una vez presentado el nuevo procedimiento de optimización. Para formular la SVM adaptativa se ha tenido que reinterpretar algunos parámetros de la SVM para conseguir que se adapte en entorno no estacionarios, que proporcionan muestras no i.i.d. Tanto la SVM adaptativa como el cambio de la función de coste se han realizado para la SVM para clasificación y sus dos versiones para regresión.