ESTRUCTURAS MATEMATICAS PARA EL MODELO CUALITATIVO DE ORDENES DE MAGNITUD ABSOLUTOS.

Autor: AGELL JANE NURIA
Año: 1997
Universidad: POLITECNICA DE CATALUÑA
Centro de realización: DEPARTAMENTO: MATEMATICA APLICADA II PROGRAMA DE DOCTORADO: MATEMATICA APLICADA
Centro de lectura: MATEMATICAS
Director: PIERA CARRETE NURIA
Tribunal: TRAVE-MASSUYES LOUISE , AGUILAR JOSEP , ROVIRA XARI , FUERTES ARMENGOL JOSEP M. , PRATS DUAYGUES FRANCESC
Resumen de la tesis

El trabajo se sitúa en el marco de los formalismos matemáticos para el razonamiento cualitativo, donde lo que se pretende es buscar modelos para trabajar en situaciones en que los datos sean cualitativos. Concretamente, este trabajo se encuentra en el ámbito del llamado modelo de órdenes de magnitud absolutos. El objetivo principal de la memoria que se presenta ha sido caracterizar las funciones y los operadores cualitativos, definidos en espacios de órdenes de magnitud, que son consistentes con los reales. Se comienza el trabajo dando una extensión del espacio cualitativo de órdenes de magnitud generado a partir de siete etiquetas básicas a espacios cualitativos de órdenes de magnitud generados a partir de 2n+1 etiquetas básicas. En segundo lugar, se estudia como se comporta la igualdad cualitativa en estos nuevos espacios. Se definen y se estudian los conceptos de expresión cualitativa de una función o un operador real, y también los de función y operador cualitativo generable a partir de la base. Este es el punto de partida para plantear y demostrar los teoremas de caracterización que nos permiten analizar la consistencia con los reales de las funciones y los operadores cualitativos. Es decir, nos permiten ver cuando una función o un operador cualitativo dado proviene del paso al cualitativo de alguna función o algún operador definido inicialmente en R. A partir de los resultados obtenidos, se desarrolla una aplicación en MATLAB (versión 5.1), que permite generar espacios cualitativos de órdenes de magnitud y estudiar funciones y operadores cualitativos. Por último se definen estructuras algebraicas cualitativas, como espacios vectoriales o espacios normales cualitativos, y relaciones binarias entre descripciones cualitativas para construir métodos que nos permitan actuar en situaciones en que los datos sean cualitativos. A partir del problema que plantea la no-asociatividad del operador suma cualitativa, se da una solución para obviar esta falta de asociatividad generalizable a cualquier operador consistente con los reales. Se definen y se caracterizan las soluciones de ecuaciones lineales cualitativas definidas en espacios de órdenes de magnitud. Finalmente, se da una aproximación cualitativa al problema del seguimiento de un móvil, para mostrar el funcionamiento del modelo cualitativo de las órdenes de magnitud en una aplicación práctica.
Materias relacionadas