DISEÑO Y VALIDACIÓN DE UN MODELO PREDICTIVO DE DESARROLLO DE SHOCK CARDIOGÉNICO EN PACIENTES CON INFARTO AGUDO DE MIOCARDIO

Autor: MARTÍN BENÍTEZ JUAN CARLOS
Año: 2003
Universidad: COMPLUTENSE DE MADRID
Centro de realización: FACULTAD DE MEDICINA UNIVERSIDAD COMPLUTENSE DE MADRID
Centro de lectura: MEDICINA
Director: VARGAS CASTRILLÓN EMILIO
Tribunal: MORENO GONZÁLEZ ALFONSO , CATURLA SUCH JUAN , LÓPEZ BUENADICHA ADOLFO SANTIAGO , LÓPEZ BUENDIA SANTIAGO , HERRERO ALONSO CARLOS
Resumen de la tesis

INTRODUCCIÓN El shock cardiogénico (SC) constituye la principal causa de muerte en los pacientes con infarto agudo de miocardio (IAM). Las medidas terapéuticas una vez el SC aparece se han mostrado de limitada eficacia, por lo que los esfuerzos deben dirigirse a la prevención de está complicación. OBJETIVO Elaborar un modelo predictivo que permita la identificación precoz de los pacientes que van a desarrollar SC. Este modelo se genera a partir de variables clínicas simples recogidas a l ingreso en el hospital. MÉTODO Se analizan las características clínicas, de los pacientes con diagnóstico de IAM ingresados en el periodo 1996-2000 (cohorte A). Mediante análisis multivariado se identifican las variables predecitoras que configuran un modelo predictivo. Este modelo se valida de forma prospectiva en una cohorte diferente (cohorte B) en la que se evalúa su rendimiento. RESULTADOS En la cohorte A (1013 pacientes) desarrolan SC el 9,1%, con una mortalidad en este grupo del 63%. Se identificaron como variables asociadas al desarrollo de SC e incluidas en el modelo predictivo final: la insuficiencia cardiaca (OR=11,09 [IC 95% 6,15-19,98]), RCP preingreso (OR=2,55 [1,25-5,22]), presión arterial menor de 110 mmHg (OR=2,80 [1,59-4,92]), frecuencia cardiaca patológica (OR=1,90 [1,07-3,38]), ritmo no sinusal (OR=2,94 [1,48-5,84]), alteración de la conducción en el electrocardiograma (OR=1,90 [1,04-3,46]), elevación del ST (OR=2,28 [1,30-3,99]). Este modelo clasifica correctamente al 85% de los pacientes con un área bajo la curva de 0,88 (0,82-0,92). El modelo generado mantiene su rendimiento tras su aplicación prospectiva en la cohorte B (246 pacientes). CONCLUSIONES El modelo predictivo elaborado a partir de variables clínicas identificadas en el momento del ingreso permite identificar de forma adecuada a los pacientes que van a desarrollar SC.
Materias relacionadas